Perfect square and perfect cube

0 votes
asked Oct 11, 2009 by d3vdpro

Is there any predefined function in c++ to check whether the number is square of any number and same for the cube..

7 Answers

0 votes
answered Oct 11, 2009 by jesse-beder

sqrt(x), or in general, pow(x, 1./2) or pow(x, 1./3)

For example:

int n = 9;
int a = (int) sqrt((double) n);
if(a * a == n || (a+1) * (a+1) == n)  // in case of an off-by-one float error
    cout << "It's a square!\n";

Edit: or in general:

bool is_nth_power(int a, int n) {
  if(n <= 0)
    return false;
  if(a < 0 && n % 2 == 0)
    return false;
  a = abs(a);

  int b = pow(a, 1. / n);
  return pow((double) b, n) == a || pow((double) (b+1), n) == a;
}
0 votes
answered Oct 11, 2009 by chris-jester-young

No, but it's easy to write one:

bool is_perfect_square(int n) {
    if (n < 0)
        return false;
    int root(round(sqrt(n)));
    return n == root * root;
}

bool is_perfect_cube(int n) {
    int root(round(cbrt(n)));
    return n == root * root * root;
}
0 votes
answered Oct 11, 2012 by nikoo28

Try this:

#include<math.h>
int isperfect(long n)
{
    double xp=sqrt((double)n);
    if(n==(xp*xp))
        return 1;
    else
        return 0;
}
0 votes
answered Oct 23, 2013 by douglas-b-staple

No, there are no standard c or c++ functions to check whether an integer is a perfect square or a perfect cube.

If you want it to be fast and avoid using the float/double routines mentioned in most of the answers, then code a binary search using only integers. If you can find an n with n^2 < m < (n+1)^2, then m is not a perfect square. If m is a perfect square, then you'll find an n with n^2=m. The problem is discussed here: https://math.stackexchange.com/questions/41337/efficient-way-to-determine-if-a-number-is-perfect-square

0 votes
answered Jan 19, 2014 by deepeshkumar

For identifying squares i tried this algorithm in java. With little syntax difference you can do it in c++ too. The logic is, the difference between every two consecutive perfect squares goes on increasing by 2. Diff(1,4)=3 , Diff(4,9)=5 , Diff(9,16)= 7 , Diff(16,25)= 9..... goes on. We can use this phenomenon to identify the perfect squares. Java code is,

    boolean isSquare(int num){
         int  initdiff = 3;
         int squarenum = 1;
         boolean flag = false;
         boolean square = false;
         while(flag != true){

                if(squarenum == num){

                    flag = true;
                    square = true;

                }else{

                    square = false;
                 }
                if(squarenum > num){

                    flag = true;
                }
            squarenum = squarenum + initdiff;
            initdiff = initdiff + 2;
   }
              return square;
 }  

To make the identification of squares faster we can use another phenomenon, the recursive sum of digits of perfect squares is always 1,4,7 or 9. So a much faster code can be...

  int recursiveSum(int num){
     int sum = 0;   
     while(num != 0){
     sum = sum + num%10;
     num = num/10;         
     }
     if(sum/10 != 0){         
        return recursiveSum(sum);     
     }
     else{
         return sum;
     }

 }
  boolean isSquare(int num){
         int  initdiff = 3;
         int squarenum = 1;
         boolean flag = false;
         boolean square = false;
         while(flag != true){

                if(squarenum == num){

                    flag = true;
                    square = true;

                }else{

                    square = false;
                 }
                if(squarenum > num){

                    flag = true;
                }
            squarenum = squarenum + initdiff;
            initdiff = initdiff + 2;
   }
              return square;
 }  

   boolean isCompleteSquare(int a){
    // System.out.println(recursiveSum(a));
     if(recursiveSum(a)==1 || recursiveSum(a)==4 || recursiveSum(a)==7 || recursiveSum(a)==9){

         if(isSquare(a)){

             return true;

         }else{
             return false;
         }


     }else{

         return false;


     }

  }
0 votes
answered Jan 22, 2016 by prashant-shubham

For perfect square you can also do:

if(sqrt(n)==floor(sqrt(n)))
    return true;
else
    return false;

For perfect cube you can:

if(cbrt(n)==floor(cbrt(n)))
    return true;
else
    return false;

Hope this helps.

0 votes
answered Sep 15, 2017 by princegautham

We could use the builtin truc function -

#include <math.h>

// For perfect square
bool is_perfect_sq(double n) {
    double r = sqrt(n);
    return !(r - trunc(r));
}

// For perfect cube
bool is_perfect_cube(double n) {
    double r = cbrt(n);
    return !(r - trunc(r));
}
Welcome to Q&A, where you can ask questions and receive answers from other members of the community.
Website Online Counter

...