Enumerate over an enum in C++

0 votes
asked Sep 7, 2009 by jameszhao00

In C++, Is it possible to enumerate over an enum (either runtime or compile time (preferred)) and call functions/generate code for each iteration?

Sample use case:

enum abc
{    
    start
    a,
    b,
    c,
    end
}    
for each (__enum__member__ in abc)
{    
    function_call(__enum__member__);    
}

Plausible duplicates:

9 Answers

0 votes
answered Sep 7, 2009 by konrad-rudolph

Neither is possible without a little manual labour. A lot of the work can be done by macros, if you’re willing to delve into that area.

0 votes
answered Sep 7, 2009 by digitalross

No

However, you could define your own class that implements enum-like features with iterations. You may recall a trick from the pre 1.5 Java days, called the "type safe enum design pattern". You could do the C++ equivalent.

0 votes
answered Sep 7, 2009 by steve-jessop

Expanding on what Konrad says, one possible idiom in the case of "generate code for each iteration" is to use an included file to represent the enumeration:

mystuff.h:

#ifndef LAST_ENUM_ELEMENT
#define LAST_ENUM_ELEMENT(ARG) ENUM_ELEMENT(ARG)
#endif

ENUM_ELEMENT(foo)
ENUM_ELEMENT(bar)
LAST_ENUM_ELEMENT(baz)

// not essential, but most likely every "caller" should do it anyway...
#undef LAST_ENUM_ELEMENT
#undef ENUM_ELEMENT

enum.h:

// include guard goes here (but mystuff.h doesn't have one)

enum element {
    #define ENUM_ELEMENT(ARG) ARG,
    #define LAST_ENUM_ELEMENT(ARG) ARG
    #include "mystuff.h"
}

main.cpp:

#include "enum.h"
#define ENUM_ELEMENT(ARG) void do_##ARG();
#include "mystuff.h"

element value = getValue();
switch(value) {
    #define ENUM_ELEMENT(ARG) case ARG: do_##ARG(); break;
    #include "mystuff.h"
    default: std::terminate();
}

So, to add a new element "qux", you add it to mystuff.h and write the do_qux function. You don't have to touch the dispatch code.

Of course if the values in your enum need to be specific non-consecutive integers, then you end up maintaining the enum definition and the ENUM_ELEMENT(foo)... list separately, which is messy.

0 votes
answered Sep 7, 2009 by tom

This seems hacky to me, but may suit your purposes:

enum Blah {
  FOO,
  BAR,
  NUM_BLAHS
};

// later on
for (int i = 0; i < NUM_BLAHS; ++i) {
  switch (i) {
  case FOO:
    // foo stuff
    break;
  case BAR:
    // bar stuff
    break;
  default:
    // you're missing a case statement
  }
}

If you need a special start value, you can make that a constant and set it in your enum. I didn't check if this compiles, but it should be close to being there :-). Hope this helps.

I think this approach might be a good balance for your use case. Use it if you don't need to do this for a bunch of different enumerated types and you don't want to deal with preprocessor stuff. Just make sure you comment and probably add a TODO to change it at a later date to something better :-).

0 votes
answered Sep 7, 2009 by stackedcrooked

C++ currently does not provide enumerator iteration. Despite that, the need sometimes arises for this. A common workaround is to add values that mark the beginning and the ending. For example:

enum Color
{
    Color_Begin,
    Color_Red = Color_Begin,
    Color_Orange,
    Color_Yellow,
    Color_Green,
    Color_Blue,
    Color_Indigo,
    Color_Violet,
    Color_End
};

void foo(Color c)
{
}


void iterateColors()
{
    for (size_t colorIdx = Color_Begin; colorIdx != Color_End; ++colorIdx)
    {
        foo(static_cast<Color>(colorIdx));
    }
}
0 votes
answered Sep 8, 2009 by johannes-schaub-litb

To add to @StackedCrooked answer, you can overload operator++, operator-- and operator* and have iterator like functionality.

enum Color {
    Color_Begin,
    Color_Red = Color_Begin,
    Color_Orange,
    Color_Yellow,
    Color_Green,
    Color_Blue,
    Color_Indigo,
    Color_Violet,
    Color_End
};

namespace std {
template<>
struct iterator_traits<Color>  {
  typedef Color  value_type;
  typedef int    difference_type;
  typedef Color *pointer;
  typedef Color &reference;
  typedef std::bidirectional_iterator_tag
    iterator_category;
};
}

Color &operator++(Color &c) {
  assert(c != Color_End);
  c = static_cast<Color>(c + 1);
  return c;
}

Color operator++(Color &c, int) {
  assert(c != Color_End); 
  ++c;
  return static_cast<Color>(c - 1);
}

Color &operator--(Color &c) {
  assert(c != Color_Begin);
  return c = static_cast<Color>(c - 1);
}

Color operator--(Color &c, int) {
  assert(c != Color_Begin); 
  --c;
  return static_cast<Color>(c + 1);
}

Color operator*(Color c) {
  assert(c != Color_End);
  return c;
}

Let's test with some <algorithm> template

void print(Color c) {
  std::cout << c << std::endl;
}

int main() {
  std::for_each(Color_Begin, Color_End, &print);
}

Now, Color is a constant bidirectional iterator. Here is a reusable class i coded while doing it manually above. I noticed it could work for many more enums, so repeating the same code all over again is quite tedious

// Code for testing enum_iterator
// --------------------------------

namespace color_test {
enum Color {
  Color_Begin,
  Color_Red = Color_Begin,
  Color_Orange,
  Color_Yellow,
  Color_Green,
  Color_Blue,
  Color_Indigo,
  Color_Violet,
  Color_End
};

Color begin(enum_identity<Color>) {
  return Color_Begin;
}

Color end(enum_identity<Color>) {
  return Color_End;
}
}

void print(color_test::Color c) {
  std::cout << c << std::endl;
}

int main() {
  enum_iterator<color_test::Color> b = color_test::Color_Begin, e;
  while(b != e)
    print(*b++);
}

Implementation follows.

template<typename T>
struct enum_identity { 
  typedef T type; 
};

namespace details {
void begin();
void end();
}

template<typename Enum>
struct enum_iterator 
  : std::iterator<std::bidirectional_iterator_tag, 
                  Enum> {
  enum_iterator():c(end()) { }

  enum_iterator(Enum c):c(c) { 
    assert(c >= begin() && c <= end());
  }

  enum_iterator &operator=(Enum c) {
    assert(c >= begin() && c <= end());
    this->c = c; 
    return *this;
  }

  static Enum begin() {
    using details::begin; // re-enable ADL
    return begin(enum_identity<Enum>());
  }

  static Enum end() {
    using details::end; // re-enable ADL
    return end(enum_identity<Enum>());
  }

  enum_iterator &operator++() {
    assert(c != end() && "incrementing past end?");
    c = static_cast<Enum>(c + 1);
    return *this;
  }

  enum_iterator operator++(int) {
    assert(c != end() && "incrementing past end?");
    enum_iterator cpy(*this);
    ++*this;
    return cpy;
  }

  enum_iterator &operator--() {
    assert(c != begin() && "decrementing beyond begin?");
    c = static_cast<Enum>(c - 1);
    return *this;
  }

  enum_iterator operator--(int) {
    assert(c != begin() && "decrementing beyond begin?");
    enum_iterator cpy(*this);
    --*this;
    return cpy;
  }

  Enum operator*() {
    assert(c != end() && "cannot dereference end iterator");
    return c;
  }

  Enum get_enum() const {
    return c;
  }

private:
  Enum c;
};

template<typename Enum>
bool operator==(enum_iterator<Enum> e1, enum_iterator<Enum> e2) {
  return e1.get_enum() == e2.get_enum();
}

template<typename Enum>
bool operator!=(enum_iterator<Enum> e1, enum_iterator<Enum> e2) {
  return !(e1 == e2);
}
0 votes
answered Jan 2, 2010 by ken-smith

You can perform some of the proposed runtime techniques statically with TMP.

#include <iostream>

enum abc
{
    a,
    b,
    c,
    end
};

void function_call(abc val)
{
    std::cout << val << std::endl;
}

template<abc val>
struct iterator_t
{
    static void run()
    {
        function_call(val);

        iterator_t<static_cast<abc>(val + 1)>::run();
    }
};

template<>
struct iterator_t<end>
{
    static void run()
    {
    }
};

int main()
{
    iterator_t<a>::run();

    return 0;
}

The output from this program is:

0
1
2

See Ch 1 of Abrahams, Gurtovoy "C++ Template Metaprogramming" for a good treatment of this technique. The advantage to doing it this way over the proposed runtime techniques is that, when you optimize this code, it can inline the statics and is roughly equivalent to:

function_call(a);
function_call(b);
function_call(c);

Inline function_call for even more help from the compiler.

The same criticisms of other enumeration iteration techniques apply here. This technique only works if your enumeration increments continuously from a through end by ones.

0 votes
answered Jan 12, 2014 by theunknowngeek

Love templating but I'm going to make note of this for my future/other people's usage so we're not lost with any of the above.

Enums are convenient for the sake of comparing things in a known ordered fashion. They are typically used hard-coded into functions for the sake of readability against integer values. Somewhat similar to preprocessor definitions, with the exception that they are not replaced with literals, but kept and accessed in runtime.

If we had an enum defining html error codes and we knew that error codes in the 500s are server errors, it might be nicer to read something like:

enum HtmlCodes {CONTINUE_CODE=100,CLIENT_ERROR=400,SERVER_ERROR=500,NON_STANDARD=600};

if(errorCode >= SERVER_ERROR && errorCode < NON_STANDARD)

than

if(errorCode >= 500 && errorCode < 600)

The key part is this, they are similar to arrays! But are used to cast integer values.

Short example:

enum Suit {Diamonds, Hearts, Clubs, Spades};
//does something with values in the enum past "Hearts" in this case
for(int i=0;i<4;i++){
   //Could also use i or Hearts, because the enum will turns these both back into an int 
   if( (Suit)(i) > 1 )
   {
      //Whatever we'd like to do with (Suit)(i)
   }
}

Oftentimes enums are also used with char* arrays or string arrays so that you could print some message with the associated value. Normally they're just arrays with the same set of values in the enum, like so:

char* Suits[4] = {"Diamonds", "Hearts", "Clubs", "Spades"};
//Getting a little redundant
cout << Suits[Clubs] << endl;
//We might want to add this to the above
//cout << Suits[(Suit)(i)] << endl;

And of course it's even nicer to create a generic class which handles iteration for enums like the answers above.

0 votes
answered Sep 25, 2014 by sp2danny

I usually do that like this:

enum abc
{    
    abc_begin,
    a = abc_begin,
    b,
    c,
    abc_end
};

void foo()
{
    for( auto&& r : range(abc_begin,abc_end) )
    {
        cout << r;
    }
}


range is completely generic, and defined like follows:

template <typename T>
class Range
{
public:
    Range( const T& beg, const T& end ) : b(beg), e(end) {}
    struct iterator
    {
        T val;
        T operator*() { return val; }
        iterator& operator++() { val = (T)( 1+val ); return *this; }
        bool operator!=(const iterator& i2) { return val != i2.val; }
    };
    iterator begin() const { return{b}; }
    iterator end() const { return{e}; }
private:
    const T& b;
    const T& e;
};

template <typename T>
Range<T> range( const T& beg, const T& end ) { return Range<T>(beg,end); }
Welcome to Q&A, where you can ask questions and receive answers from other members of the community.
Website Online Counter

...